viernes, 6 de diciembre de 2013

La hipérbola

Hipérbola- Una hipérbola es el conjunto de puntos en un plano cuya diferencia de sus distancias a dos puntos fijos en el plano es constante. Los puntos fijos son los focos de la hipérbola. La linea que une los focos es el eje focal. El punto medio entre los focos es el centro.  Los puntos donde la hipérbola se interseca con su eje focal son los vértices de la hipérbola. A continuación un ejemplo de todo lo antes mencionado.


                                                
                                       

Hay dos clases de hipérpobolas. La hipérbola con centro (0,0) y la hipérbola con centro (h,k). Pra poder graficar estas primero debemos buscar los siguientes datos prensentados e ilustrados en estas tablas.

                                               Hipérbola con centro (0,0) y centro (h,k)

                                    
                                               
                                               

A continuación un ejemplo de como buscar los datos usando estas tablas.

                        


Luego que tenemos estos datos graficamos y terminamos nuestro ejercicio.
Ejemplo:

                                

Y con esto concluimos el ejercicio.


La Excentricidad de una elipse

     La excentricidad de una eplipse es:


     En donde a es el semieje mayor y c es la distancia del centro de la elipse a cualquiera de los focos. La excentricidad es la razon de c y a. Entre mas grande sea c, comparado con a, los focos estan mas lejos del centro








-Una elipse bastante redonda es lde excentricidad e= 0.1, circulo perfecto









- Mientras mas lejos del eje, la grafica sera mas aplastada e= 0.8-


Ejercicios:


La Elipse

Estaremos entrando al tema de la elipse

     La elipse es un conjunto de todos los puntos en un plano cuya distancia a dos puntos es un plano cuya distancia a dos puntos fijos en el plano tiene una suma constante. Los puntos fijos son los focos de la elipse.



La elipse tiene dos centros. Centro (0,0) y Centro (h,k)





Para una elipse, la palabra ejes se usa de diversas maneras. El eje focal es una recta. Los ejes mayor y menor son segmentos de rectas. El semi eje mayor y el Semi eje menor

Partes de la elipse de centro (0,0)

Cuando X es mayor




Cuando Y es mayor 


Partes de la elipse de centro de (h,k)

Cuando X es mayor 





Cuando Y es mayor 



Ejemplos























jueves, 5 de diciembre de 2013

La Parábola

La parábola es el conjunto de puntos del plano que está a la misma distancia de un punto, su foco y de su recta fija, su directriz. 
Ejemplo de la parábola con vértice (0,0)

Estos son los datos para resolver las parábolas con vértice (h,k)

Ejemplo: 


martes, 3 de diciembre de 2013

Funciones Trigonométricas Inversas sen,cos,tan

Si f es una función uno a uno a con dominio A y rango B, entonces su inversa f^-1 es la funcion con dominio B y rayo A definida por:

f^-1(x)= y<-->f(y)=x

A. Función inversa del seno
La función inversa del seno es la función sen^-1 con dominio [-1,1] y el rango [-pi/2, pi/2] definido por

sen^-1 x=y<--> sen y= x

Esta funcion se llama(arcsen)

B. Función inversa del coseno
La funcion inversa del coseno es la función cos^-1 con dominio[-1,1] y rango[0,pi] definido por:

cos^-1 x=y<--> cos y= x

Esta función se llama(arccos)

C. Función inversa tangente
La función inversa tangente es la función tan^-1 con dominio en 1R(reales) y rango (-pi/2,pi/2) definido por:

tan^-1 x=y<--> tan y= x

Esta función se llama(arctan)

Las funciones de estas son las explicadas en el tema anterior solo que estas son las opuestas es decir que  van hacia el lado contrario de las anteriores.